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It is shown that stochastic equations can have stable solutions. In particular, 
there exists stochastic dynamics for which the motion is both ergodic and stable, 
so that all trajectories merge with time. We discuss this in the context of Monte 
Carlo-type dynamics, and study the convergence of nearby trajectories as the 
number of degrees of freedom goes to infinity and as a critical point is 
approached. A connection with critical slowdown is suggested. 
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1. I N T R O D U C T I O N  

There has been much interest in the past few years in the onset of 
instabilities in dynamical systems. (1) Chaotic behavior arises because of 
sensitive dependence on initial conditions. This can be characterized by a 
Lyapunov exponent. The effects of a small amount  of noise have been 
investigated and are now well understood. (2) The noise in physical systems 
is usually due to thermal fluctuations, but it is also sometimes useful to 
view some of the internal degrees of freedom as generating noise for the 
modes of interest. A familiar equation which describes the effects of thermal 
noise is the Langevin equation. It leads to Brownian motion, and is in fact 
a stochastic equation. The noise it models can be thought of as being very 
large. Our purpose is to understand the existence of instabilities in the large 
noise limit, so we will study the stability of the solutions to stochastic 
equations. It was realized some time ago that Lyapunov exponents could 
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be used to characterize the stability of stochastic as well as ordinary dif- 
ferential equations. (3) We present here both numerical and analytical 
results for Lyapunov exponents of these systems. 

For the stochastic equations of motion we consider, standard 
theorems show that the trajectories generated are ergodic, that is, any tra- 
jectory fills configuration space densely. The ergodicity however does not 
require the motion to be sensitive to perturbations or initial conditions. It 
is in fact very easy to find ergodic stochastic dynamics where all initial con- 
ditions converge exponentially in time to a unique trajectory. 

Our emphasis is on Monte Carlo dynamics of thermodynamical 
systems. The stability of the motion thus depends both on the volume and 
the temperature. The discussion is as follows. 

Sections 2 and 3 review some necessary notions of Lyapunov 
exponents and Monte Carlo dynamics. Section 4 gives examples of 
stochastic dynamics for which the Lyapunov exponents exist and such that 
all trajectories merge with time. Section 5 discusses properties of the 
Lyapunov exponents as the number of degrees of freedom is increased, and 
as one approaches a second order phase transition. It is argued that the 
exponent for critical slowdown "z" determines how the maximum 
Lyapunov exponent scales as /~ ~ tic. These points are illustrated with a 
simulation of the 0(3) model. 

2. STABIL ITY  A N D  L Y A P U N O V  E X P O N E N T S  OF A 
D Y N A M I C A L  S Y S T E M  

Consider a set of first-order equations for an N-component vector: 

)(i=Fi(X, t), i= 1, N (1) 

where one allows an explicit time dependence in F. The motion is 
asymptotically stable if a small change 3X(0) in the initial position does 
not affect the long-time behavior of the trajectory, X(t). Sufficiently close 
trajectories then converge with time. Consider a nearby trajectory, 
X(t) + 6X(t). To lowest order in 3X. we have 

CF 
~2( t )  = -~--2 ~x ( t )  = J(X,  t) ~x ( t )  (2) 

The asymptotic stability of the trajectory is assured if 

bX(t)--*O as t ~ o o  (3) 
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It may happen that the quantity 

~1= l im 1 II (~ll21n.,,fiX, t,,, (4) 
, ~  t IlfiX(O)lt 

exists for almost all initial vectors fiX(0). The existence of this limit has 
been proved only for a limited class of dynamics, (4) but it seems to exist for 
many dynamical systems. (5) Then, from Eq. (4), one sees that two trajec- 
tories on average converge or diverge exponentially in time. 21 is called the 
one-dimensional Lyapunov exponent. A sufficient condition for the motion 
to be stable is that 21 be strictly negative. 

One can also consider the evolution of an infinitesimal k-dimensional 
parallelepiped. Its volume on average increases or decreases exponentially 
at a rate given by the kth dimensional Lyapunov exponent. From these 
exponents, one defines the Lyapunov spectrum which describes how the 
various directions f ix  grow or shrink exponentially with time. 

The above equations can be extended to discrete time maps in a 
straightforward way. Analogously to Eqs. (1) and (2), one has 

X(n + 1 ) = F(X(n) ,  n) 

OF 
fiX(n + 1 ) = - ~  fiX(n) = S(X(n), n) fiX(n) 

(5) 

One can similarly discuss the stability of the motion and consider the 
Lyapunov exponent 

, ~1  lim l ln  ]EcSXtn)][ (6) 
n ~ n  IlfiX(0)l[ 

as well as the Lyapunov spectrum. 
This formalism will be applied to stochastic differential equations and 

stochastic maps in Section 4. Next, we describe Monte Carlo dynamics 
which is an example of a stochastic map. 

3. M O N T E  C A R L O  D Y N A M I C S  

Monte Carlo simulations are widely used for determining properties of 
statistical systems, and in particular for measuring critical exponents. Con- 
sider a thermodynamical system which has an energy function H defined 
on a space of N variables. The Monte Carlo generates a sequence of points 
X(n) in this N-dimensional space such that the long-time behavior of the 
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distribution of these points is Boltzmannian, i.e., the points have relative 
probabilities exp[-/~H(X)], where /~ is the inverse temperature of the 
system. At each time step n, one "updates" X(n), the current value of X: a 
new vector X(n+ 1) is chosen with probability T(X(n), X(n+ 1)), making 
X(n + 1) a stochastic function of X(n). T is called the transition matrix, and 
defines a Markov process. T is chosen so that the sequence X(n) is ergodic. 
Ensemble averages can then be replaced by time averages. In practice, the 
choice of X(n + 1) is obtained by taking X(n + 1)= F(X(n), R(n)) where 
R(n) is a random number or vector, and F is a function chosen so that 
X(n + 1) has the right probability distribution. For a fixed sequence R(n), 
one can consider the Monte Carlo dynamics X(n + 1)= F(X(n), n) as a 
time dependent (deterministic) map. The formalism of Section 2 thus 
applies. 

Note that the statics (i.e., H) of a statistical mechanical model do not 
specify T uniquely. Different choices of T lead to different dynamics and 
thus to different Monte Carlo methods: metropolis, heat bath, etc .... It is 
important to observe that T does not uniquely specify F either: the 
probability distribution of X(n + 1) is unchanged if one substitutes for R(n) 
another random number h(X(n),R(n)) as long as h preserves the 
probability distribution of the random number. The function h thus does 
not affect the statistical properties of the Markov chain, but it will affect 
the Lyapunov exponents as discussed in Section 4. 

When do these discrete time dynamics have Lyapunov exponents? In 
the standard Metropolis method, the Jacobian matrix J is singular, so one 
does not expect 21 to exist. Many other Monte Carlo dynamics though 
have analytic Jacobians. In such cases, as long as the Markov chain has 
only short term memory and is ergodic, it is natural to expect that 21 and 
possibly the whole Lyapunov spectrum exists. 

Since the motion depends on the sequence of random numbers R(n), 
the Lyapunov exponents may a priori depend on the choice of R(n). 
However, the exponents are defined in the infinite time limit. They thus 
depends on the statistical properties of the tail of the sequence, and so 
should be constant for almost all sequences R(n). (3) 

4. EXAMPLES OF ERGODIC D Y N A M I C S  WITH 
NEGATIVE L Y A P U N O V  EXPONENTS 

4.1. Langevin Dynamics 

The Langevin equations are first-order, continuous-time stochastic 
equations which describe the brownian motion of interacting particles in 
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contact with a thermal bath at inverse temperature /~. For  an energy 
function H(X), the equations of motion are (in vector notation) 

~H 
x( t )  = - ~  -U2 + ~(t) (7) 

where the r/'s are independent Gaussian random variables. It can be shown 
that time averages using these equations lead to the correct ensemble 
averages, i.e., the trajectory is ergodic with probability one and reproduces 
the Boltzmann distribution. The equations of motion for a difference vector 
are simply 

~2 H 
6X(t) = - ~  ~ c~X(t). (s) 

Consider first a single particle in a harmonic potential so that c?2H/•Xc?X is 
constant and positive. Then 21 exists and the motion is absolutely stable: 
6X(t) ~ 0; all initial conditions converge exponentially in time to the same 
trajectory. The same result holds for a system of coupled harmonic 
oscillators describing free fields on a lattice: the Lyapunov exponents are 
all negative, the maximum exponent being the negative of the mass 
squared. For general H, a sufficient condition for the stability of the motion 
of Eq. (7) is 02H/OXc?X> O. This is satisfied for massive free fields and also 
for a class of interacting field theories. (6) 

4.2. The Heat  Bath M e t h o d  

In the Monte Carlo method, time is discrete. A simple way to ensure 
Boltzmann distribution is to update the components of X one at a time 
while satisfying detailed balance. At the time step n, only the component 
j(n) of X(n) is changed: 

Xi(n + 1 ) = 6ij(~Fj(m(X(n), n, fl) + (1 -- 6i, j(m) Xi(n) (9) 

In the heat bath method, F is chosen so that Jfj(n) has a Boltzmann dis- 
tribution. For  our purposes, the various components i of X will be 
variables on a lattice. These variables can be updated in a random or in an 
orderly fashion. To keep the discussion as simple as possible, we shall con- 
sider the latter kind of update only, so one can introduce the notion of a 
sweep. After one sweep, all the variables on the lattice have been updated 
exactly once. Denoting by s the sweep number, we have 

X(s + 1) = G(X(s), R(s), fl) (10) 
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where R(s) denotes the random numbers used in the sweep. If F (and thus 
G) is differentiable, the behavior of an infinitesimal difference vector is 
given by 

,~X(s + 1)= J~(X(s), R(s), ~) ,~X(s) (11) 

as in Eq. (5). 
If IlJ~ll < 1 for all (X, R), then necessarily the motion is stable: 

lim fiX(s) = 0 (12) 

This does not even require 2 ~ to exist. Now we will show that for the heat 
bath algorithm, one can find an F such that IlJll ~/~ as/~ ~ 0. Thus, at least 
at high temperatures, there exist dynamics such that all trajectories merge 
with time: the motion is absolutely stable. 

In the heat bath algorithm, the updated variable has a Boltzmann dis- 
tribution. At /~ = 0, this distribution is "flat," so one can take an F such 
that X(n+I)=F(X(n),R(n),~=O) is completely independent of X(n). 
Then I[Jll--0 at/3 = 0. If F is taken to be differentiable (this is possible if H 
is differentiable), one has IIJL[ ~ 1 for f i~ 1. The motion is then both stable 
at high temperatures and ergodic. In non stochastic maps, the stability 
decreases with increasing noise (temperature), and here it is the opposite. 
This can be understood easily: in the first case, one is perturbing about an 
orbit with no noise (deterministic). In the second case, the orbit at high 
temperature is determined mainly by the sequence of random numbers, and 
it is the "deterministic" piece which generates the instability or pertur- 
bation. If ;~1 exists, one has 2~~ ln f l~0 .  We will now give numerical 
evidence that 2 ~ does indeed exist for certain choices of F. 

We considered the 0(3) model which is a two-dimensional spin model. 
The spin variables are normalized three-component vectors which live on 
the lattice sites. We took several differentiable choices of F corresponding 
to a heat bath on each site, and considered both sequential and checker- 
board updates. (See the Appendix for details.) We used the algorithm of 
Ref. 5 to calculate the exponents, and observed that they converged to their 
limits statistically. There is thus good numerical evidence that the 
Lyapunov spectrum exists. Fig. 1 shows a summary of the values of 21 as a 
function of ft. Th'e main features are (i) certain choices of F lead to 21~ In fl 
as argued above; it is not difficult to have ergodic and stable motion at 
small fl; (ii) as fl increases, 2 ~ tends to increase, sometimes becoming 
positive at low enough temperatures. 

What limits the stability of the motion, and in particular, when does 
the motion have to become unstable? Given the possibility of stability at 
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Fig. 1. 
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The one-dimensional Lyapunov exponent for a one-parameter family of F's in a heat 
bath simulation of the 0(3) model. 

high temperature for our choice of the transition matrix T, there should be 
a critical value of the inverse temperature, tic(T), above which all choices of 
F lead to unstable motion. 

4.3. Condition for the Negativity of k 1 

Here, we make use of a connection between stability and a source 
method which can be used to extract correlation functions. (6"7) Consider a 
persistent perturbation of an absolutely stable motion. If the perturbation 
is small enough, the distance between the perturbed and unperturbed tra- 
jectories remains bounded in time. (8) Apply this to a lattice system where 
the metric on configuration space is given by the norm IIXll = Z j  IXjl. Sup- 
pose there is a choice of F such that the motion is absolutely stable. Now 
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add a perturbation eXi0 to the energy function H. It is not difficult to see 
that the difference of the perturbed and unperturbed trajectories satisfies 

( 6 X ( t ) ) , =  (X(e, t ) -X(e=O, t))t ~XoefXioX) c (13) 

where ( )~ denotes a time average. The rightmost average is an ensemble 
one, and leads to a connected correlation function. Taking norms, one has 

< 116g(t)H ), > ~ ~ < Y i o X j )  c (14) 
J 

By hypothesis, this is bounded. If the lattice model under consideration is 
in a massless phase where the correlation length is infinite, correlation 
functions fall off as a power: 

(XiXj)~. l i_jl  ~d-z+,). r/>O (15) 

d being the dimension of the system. Then the sum in Eq. (14) diverges in 
the infinite-volume limit, violating the inequality. This shows that 
generically, no choice of F can lead to absolute stability in the infinite- 
volume limit unless the correlation length is finite. Conversely, it may be 
that there exists a choice of F which leads to absolutely stable motion as 
long as correlation functions fall off exponentially. The critical inverse tem- 
perature of H then coincides with the onset of instability, tic(T). This seems 
to be the case for the 0(3) heat bath for sequential and checkerboard 
updates. For this model, spin-spin correlation functions fall off exponen- 
tially with distance at all ft. Our results for 21 are displayed in Fig. 1. For 
all fl, we have been able to find F's so that 21< 0, though this becomes 
more and more difficult with increasing ft. We thus suspect that for our 
choice of T (the heat bath), fie(T)= tic. 

5. SCALING PROPERTIES OF THE L Y A P U N O V  EXPONENTS 

5.1. The In f in i te -Vo lume Limit 

Consider a system of N uncoupled nonautonomous differential 
equations, and suppose that each equation has a one dimensional 
exponent. To find the exponents of the system of equations, take a dif- 
ference vector 6X with only one nonzero component: the Lyapunov spec- 
trum of the total system is simply given by the set of exponents of the 
equations. Now imagine turning on a coupling between the equations and 
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increasing N while keeping the coupling fixed at some value which is not 
too small. The difference vector obeys 

62~ = ~ Jr 6Xj (16) 
J 

If all the variables are directly coupled to each other, the matrix J(X) will 
have a largest eigenvalue which typically grows like N. This will happen for 
instance if J~ > 0 for all (i, j),  but slower growth can be expected if the Ju 
are more random. 21 should have this same N dependence, so that in the 
above example, ~I,'~N. This has been seen numerically for a system with 
long-range interactions. (9) If, however, the number of variables which are 
coupled to any given one is fixed, the spectrum of J(X) is bounded from 
above and below, independently of N, so one should have 

21 --, const as N ~ o o  (17) 

and one can argue similarly for the smallest exponent. Then the Lyapunov 
spectrum is bounded, and remains so as N--* oo. This will be the case 
hereafter. 

Similar arguments hold for discrete-time equations. From now on, we 
shall consider Monte Carlo lattice simulations to be specific. To keep the 
analogy with the continuous-time equations as close as possible, time will 
be measured in sweep units. Usually the interaction energy is of short 
range. The number of degrees of freedom directly coupled to each other is 
independent of N, so 21 should have a limit as the volume N ~  oo. 
However, for sequential updates, if IlJ[[ > 1, the limit may be infinity since a 
disturbance can propagate throughout the whole lattice in one sweep. A 
checkerboard update does not have this bad property and should have a 
smooth infinite-volume limit, converging as N ~ oo. In practice, we found 
that as long as 21 <0 ,  the sequential update had a finite N ~  oo limit also. 

As N---, 0% all N exponents are restricted to a finite interval, [a, b]. 
There is thus an increasing density of exponents, and this density should 
grow linearly with N. This points to the existence of a function p(2) such 
that the number of exponents in an interval d2 is given by Np(2)d2  as 
N--, oo. This is to be contrasted with systems with a continuum of degrees 
of freedom, (1~ where the density became independent of N and the spec- 
trum became unbounded from below. In Fig. 2, the approach to the infinite 
volume is shown for the heat bath dynamics studied. The density of 
exponents shows a linear growth with N. This property can also be checked 
for free fields for both heat bath and Langevin dynamics. 

What is the dependence of the maximum exponent 21 on the volume? 
The equilibrium distribution of the lattice at finite N has corrections to the 
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Fig. 2. 

60 

50 

4o 

p(N) 

30 

20 

10 

B : l . o  
-r/ = 0.4 / 

X 

/ 
• 

x/ 
/ 

x 

O Z _ _  I I 

O ]O0 200 300 

Density of Lyapunov exponents at 2 = 21 as a function of the lattice volume./~ = 1.0; 
r/=0.4. 

infinite-volume limit which are of order  e x p ( - L / ~ ) ,  where ~ is the 
correlat ion length and L is the linear size of the lattice. (In our  simulations, 
L 2 =  N.) 21 should have similar corrections as confirmed by Fig. 3. In  the 
case of a sequential update,  one can expect in addi t ion exp(21L) correc- 
tions. Note  that  these are responsible for the bad N ~  oo limit when 2 1 >  0. 

5.2. Temperature Dependence and Scaling 

Let us assume as the numerical results suggest that  21 can be negative 
th roughou t  the entire massive phase. It  is evident f rom Fig. 1 that  as the 
critical point  /~ = oo of the 0 ( 3 )  model  is approached,  the lower bound  
over F of  2 ~ goes to 0. It is natural  to expect a critical behavior  of the form 

min 2 ~ ~ - Y  (18) 
F 
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Fig. 3. 
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where ~ is the correlation length and y is a new critical exponent. This 
scaling law can be checked in the case of  free fields for heat bath and 
Langevin dynamics. 

Is y related to known critical exponents? It is well known that the 
dynamics slow down at a critical point: there are modes which become 
static as fi-+ #c- This critical slow down is characterized by a diverging 
autocorrelation time 7: 

~_~z (19) 

is the natural time scale of the dynamics. If no other time scale is involved 
in the problem, y and z should be identical. This is indeed the case for free 
fields, but more generally, it may be that o n l y y  >~ z. Numerical experiments 
can only set a bound on y as it is difficult in practice to do a thorough 

822/41/1-2-17 
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minimization over F. We have not considered the most general form for F, 
but our numerical results are certainly in agreement with the above 
inequality. 

6. C O N C L U S I O N S  

We have considered the stability of stochastic dynamics. There is a 
very large class of such dynamics which are ergodic and yet have all trajec- 
tories merge with time. The trajectories are then completely insensitive to 
initial conditions. We focused on equilibrium thermodynamic systems, and 
showed that the equations of motions can be very stable at high tem- 
perature (large thermal noise). We proved that a necessary condition for 
stability is that the correlation length be finite. It was argued that the num- 
ber of Lyapunov exponents per degree of freedom should have a ther- 
modynamical limit, and we discussed the finite-volume corrections to this 
limit. Finally, the maximum Lyapunov exponent has a critical behavior at 
the onset of the instability which can probably be related to usual critical 
properties. 

A P P E N D I X  

The partition function of the 0(3) model is 

Z= f [I dSexp (fi Y'. SxSx+~) (11) 
X, lt 

where fl is the inverse temperature, and S is a three-component spin of unit 
magnitude. The spins live on the sites x of a two-dimensional lattice, and 
are coupled by a nearest-neighbor spin-spin interaction. For heat bath 
dynamics, the updated spin has a probability distribution 

dP(Si)=Cexp (flSi~ S,+~) dt2 (A2) 
Jbt 

where dO is the solid angle. The spin Si thus has a Boltzmann distribution 
in an external field of direction w =  Z_+, Si+JlY',+_i~ Si+~l. To generate &, 
start with a random spin R on the sphere with a flat distribution. Let ~ be 
the angle between R and w. We choose F so that Si is in the (R, w) plane, 
and makes an angle 0 with w, where 

cos(0) = ln[e~ + (cos ~ - 1) sinh(~)]/fi 

f i= f l  ~ S , + u  (13) 
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With this choice of F, 2 t exists, and 2 ~ ~ln(fl/2) as fl--* 0. However at 
/Y,-~ 1. 1, 21 becomes positive. Any relabeling of R which preserves its (flat) 
distribution gives another possible F. A simple class of such relabelings is 
the set of continuous maps from the sphere to the sphere which are area 
preserving. In practice, this is a much too large space to explore, so we 
have restricted ourselves to a one-parameter family of rotations of the 
sphere. These rotations take the z axis into 

w= z+rl • Si+~ z+q ~, Si+ (a4)  
+~z • 

r/ is a real number parametrizing these rotations. The first choice of F is 
obtained for r/= ~ .  Figure 1 shows the values of )1 for a range of ~/'s. 
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